
1 Administrative 

Principal Investigator 

Lucas Fortini, Pacific Island Ecosystems Research Center, U.S. Geological Survey. lfortini@usgs.gov 

Cooperators / Partners 

Kevin Brinck, Hawaii Cooperative Studies Unit, University of Hawaii at Hilo. brinck@hawaii.edu 

James Jacobi, Pacific Island Ecosystems Research Center, U.S. Geological Survey. jjacobi@usgs.gov 

Jonathan Price, Department of Geography and Environmental Sciences, University of Hawaii at Hilo. 

jpprice@hawaii.edu 

Sam Gon, Senior Scientist / Cultural Advisor, The Nature Conservancy of Hawaii. sgon@tnc.org 

Ann Sakai, Department of Ecology and Evolutionary Biology, University of California-Irvine. 

aksakai@uci.edu 

Project Title: Expanding a Dynamic Model of Species Vulnerability to Climate Change for Hawaii and 

Other Pacific Island Ecosystems 

Agreement Number: G13AC212 

Report Date: 11 November 2016 

Period of Performance: 1 July 2013 – 30 June 2016 

Total Cost: $179,470 

2 Public summary 
The Hawaiian Islands are home to a variety of native species that have been subject to numerous threats 

including development of habitat for human use, predation by introduced herbivores, and competition 

with invasive plant species. In addition to these threats global climate change is expected to increase 

temperature and alter patterns of precipitation in Hawaii. This project models the relative vulnerability 

of native plant species to the effects of climate change, in order to assist resource managers in 

effectively allocating limited resources to efficiently preserve and protect current and future habitat for 

native plants. 

We modeled vulnerability by creating an expert system – a network model linking biological traits of 

various plant species with the projected changes in species ranges under the effect of climate change. A 

panel of experts in Hawaiian plant species participated in the model design, identifying factors expected 

to affect a species’ ability to successfully respond to climate change. Once the model results were 

available, this same panel verified that the model results agreed with their own expert opinion on a 

sample of species with which they were familiar. 

The results are relative vulnerability scores for 1,056 native Hawaiian plant species. Due to limitations of 

the modeling process and the available data, the exact vulnerability scores are less important than the 

general ranking, and can be used to identify categories of species with high, middle, and low 

vulnerability to climate change. 



3 Technical summary 
We calculated the relative vulnerability of 1,056 native Hawaiian plant species under varying scenarios 

of climate change. Our methods improved upon the previous vulnerability assessment (Fortini et al. 

2013) by incorporating life-history traits of the various plant species and modeling how they affect the 

species’ ability to cope with climate change. Four different responses were modeled: 1) Tolerating the 

change in conditions, 2) Migrating to new suitable habitat, 3) Persisting in micro-refugia within existing 

habitat, or 4) Evolving to adapt to the new climate conditions. Life-history and geographic variables were 

combined in a categorical network model which defined the strength and direction of relationships 

between variables and how they affect the ways a species might respond to climate change. 

Geographic variables were projected using three different climate scenarios and downscaling methods. 

The first was an updated version of the Zhang et al. (2012) dynamically downscaled climate model based 

on the A1B emission scenario. The other two were statistically downscaled models produced by Timm et 

al. (2014) based on RCP 4.5 and 8.5 radiative forcing scenarios. All three models are ostensibly 

applicable to end-of-21st Century climate, depending upon global fossil fuel use over the next decades. 

Life-history variables were collected from existing databases, compiled from published sources, and 

gathered by surveying Hawaiian botanical experts. 

The modeled vulnerability scores were ranked, and we examined differences from the original 

vulnerability assessment, and differences resulting from the choice of climate downscaling model. The 

result is an updated list of relative vulnerability for native Hawaiian plant species. In addition, recent 

attention (e.g. Snover et al. 2013) has addressed how choice of downscaling model affects the results of 

ecological modeling. In this project, we have provided the first example in a Hawaiian system of how the 

choice of downscaling model affects ecological conclusions. 

4 Purpose and objectives 
The flora of the Hawaiian Islands is unique on a global scale for its high levels of endemism and 

represents the adaptive radiation of a small number of colonizing species over the past 30 million years 

(Price and Clague 2002). The combined impact of recent human-mediated invasive competitors, 

predators, and disease along with large-scale land-use change on isolated Hawaiian ecosystems is a well-

recognized state of biodiversity crisis (Wagner et al. 1999, Sakai et al. 2002). In addition to these 

historical factors affecting the viability of native plant species, resource managers must also consider 

how global climate change will affect the native Hawaiian biota.  

Global climate change is unequivocally linked to human activities (IPCC 2014) and is expected to affect 

numerous conditions that affect whether or not a given location is suitable habitat for a particular plant 

species. In Hawaii these factors are expected to include increased temperatures, changing atmospheric 

circulation, and precipitation patterns which may result in either an increase or decrease in precipitation 

depending upon orographic features of the landscape. 

The goal of this project is to identify native plant species most vulnerable to the projected effects of 

climate change. By identifying which species are most (and least) vulnerable, we hope to provide a tool 

for resource managers to assist them in making efficient use of limited resources. 



5 Organization and approach 
This vulnerability assessment is calculated based on a categorical network model. Such models identify 

the relationships between variables – which properties of biology or geographic distribution affect 

which other properties, with “parent” variables affecting “child” variables (the network). Each variable is 

restricted to a small number of possible values (the categories). For example, a biological variable might 

describe a plant species as “short” or “tall” affecting its ability to distribute propagules. A geographic 

variable might describe the overlap between current and projected habitat ranges as “small” or “large” 

affecting its ability to tolerate climate changes in place. For each species, the model was populated with 

known geographic and life-history variables. The outputs were the posterior probabilities of a 

“Favorable” vs. “Unfavorable” response to climate change in the four modalities: tolerate, migrate, 

persist in micro-refugia, or evolve. 

5.1 Network model 

The categorical network model was based on the original Fortini et al. (2013) model, which used only 

geographic variables. To this model, we added life-history variables and their relationships to a species’ 

ability to cope with climate change by the way it affected its ability to continue its life cycle (survival, 

reproduction, propagation) or reflecting upon its current population status (population number and size 

or recognized concern status) or its ability to adapt to potential climate change (plasticity and genetic 

diversity). This network model was then presented to a panel of botanical experts familiar with the 

Hawaiian plant community. Variables, their relationships, and relative importance were evaluated and 

the model adapted to reflect the consensus of expert opinion. New life-history variables were added as 

the experts identified them, others had their definitions clarified or changed, and yet others were 

dropped from the model as unlikely to have a biological effect. This process was repeated in an iterative 

cycle until the configuration of variables and relationships stabilized. In addition, we performed a 

sensitivity analysis to identify variables with an unusually strong or weak effect on the model results, as 

variables with negligible effect on the results could be safely removed from the model. 

5.2 Species range shifts 

Using the Price et al. (2012) parameters, we modeled species ranges as a function of elevation, 

temperature, and precipitation as described in Jacobi et al. (2016). Our methods departed slightly from 

their procedure in that we did not exclude non-pioneer-classified species from young lava flows, and we 

projected species ranges for three different climate downscaling models. This method also differs from 

the climate projection used in the original Fortini et al. (2013) vulnerability assessment in that it 

explicitly models current elevation ranges as temperature boundaries under a single downscaling model. 

This method also accommodates coastal species by assuming no maximum temperature boundaries for 

species currently found at less than 100 m elevation, removing an artifact of the first assessment where 

coastal species were projected to have minimal or no future habitat due to increased temperatures. 

5.3 Geographic variables 

We projected future species ranges under three climate downscaling models: the dynamically 

downscaled model of Zhang et al. (2012) based on the A1B emission scenario and two statistically 

downscaled models by Timm et al. (2014) based on the RCP 4.5 and 8.5 radiative forcing scenarios. We 

then compared these projected ranges with a similar range based on contemporary temperature and 



rainfall data from the Giambelluca et al. (2013) rainfall atlas of Hawaii. For each set of comparisons, we 

calculated a range of variables characterizing the geographical differences between current and 

projected future species ranges. Some examples are: the amount of overlap between current and future 

range, the distance between disjoint current and future range, the degree of fragmentation in current 

and future range, and topological variation within future vs. current range. 

Continuous geographic variables were transformed into discreet categories by defining equally sized 

groups using quantiles of the population of all species. For example, a geographic variable with levels of 

“Far” vs. “Near” would use the median as the cutpoint, so half of the 1056 species would receive a value 

of “Far” and half “Near”. Similarly, variables with five discreet categories ranging from “Very Small” to 

“Very Large” would divide the population of species into fifths using the 20, 40, 60, and 80th percentiles 

of the population range. 

5.4 Life-history variables 

Life history information for our 1056 species were collected from multiple sources. Wagner et al. (1999) 

and Price et al. (2012) represent two major published collections. We also solicited data from other 

organizations and individuals working with Hawaiian plants. Finally, we selected a set of eleven life-

history variables with a significant effect on model outputs and sent surveys to Hawaii botanical experts. 

Individual experts received from 300-350 species, specific to their island of expertise where they 

preferred. Experts were encouraged to give their best answer based on their expertise, even if only an 

educated guess, but were otherwise told to leave a species or question blank. 

Our panel of expert botanists reviewed each life-history variable to define their meaning. These 

definitions often determined the category for a given species, e.g., a plant species is either a fern or it is 

not a fern, it is tolerant of inundation or it is not. Continuous measurements were usually treated 

similarly to geographic variables, for example the range in leaf size was “Small” or “Large” split at the 

median of values for which information was available. There were some exceptions made on a biological 

basis, for example the number of populations used the 90% percentile as a cut-off between “Small” and 

“Large” because relatively few native species have more than a handful of populations. Other 

breakpoints were chosen to separate an obviously bi-modal distribution. Finally, one inherently 

subjective variable was categorized according to a reproducible algorithm. Distinct flower color was 

assigned by assembling a list of adjectives used to describe flower color, assigning “Strong”, “Medium”, 

or “Weak” to all the colors on that list, and assigning “Distinct” to species that had only strong colors, a 

strong plus a medium or weak color, or three or more medium colors used in the descriptions. 

5.5 Model parameterization 

There are two ways in which a categorical network model can be tuned. The first is the probability of a 

variable having a particular value for species where that variable is not available, e.g. a variable that 

could be either “Short” or “Tall” might have even odds of either value, or “Short” could be ten times 

more likely than “Tall”. This can be seen as analogous to the Bayesian prior in a traditional statistical 

model. The second is the relative weights the one or more parent variables have on determining the 

value of child variables in the network. These weights can be considered analogous to regression 

coefficients in a traditional linear model. 



For the most part, unknown variables were assumed to have equal probability across their possible 

categories. We made an adjustment after our original runs revealed a possible bias in life-history 

variables where information was available for only a few species. It is likely that species where most life-

history information is known are also most common and inherently less vulnerable than rarer, less-

known species. For this reason we adjusted the prior probability to make the less-favorable value more 

likely (usually from even odds to 2 to 1 against the favorable value, based on sensitivity analysis and an 

apparent correlation in earlier models) under the assumption that less-known species are usually less 

prevalent and therefore already more vulnerable to climate change. Finally, some variables in the model 

have specific biological effects that make them behave like “switches” in the network. For example, the 

variable “Fern” explicitly interacts with other parent variables to remove the effect of pollinator 

availability on a species’ ability to reproduce. 

5.6 Model implementation 

The network model has four output nodes that are the ultimate children of all the other variables in the 

model. Each of these nodes represents the probability that a species has a Favorable vs. Unfavorable 

ability to respond to climate change via: 1) Tolerating the change in place, 2) Migrating to a new range, 

3) persisting in Micro-refugia, or 4) Evolving to meet new climate conditions. Each of these posterior 

probabilities is determined by the value of the other variables and the relationships defined by the 

network model. 

Missing values introduce uncertainty in the model outputs. For variables with missing information, we 

simulate the uncertainty by calculating the outputs for all possible values of the missing data. In 

practice, with more than a few missing variables it is computationally infeasible to estimate all possible 

combinations. Instead we generate a large number (1,000) of values for each missing variable by 

sampling from its prior distribution (e.g., sampling from “Tall” or “Short” from an even (1:1) prior with 

those two categories, or sampling from “Tall” or “Short” or “Short” if the prior is 1:2). An additional 

source of uncertainty arrives from our expert-solicited data; sometimes multiple experts would provide 

different responses for the same species. In such cases we treated the experts’ opinions as the prior 

distribution and sampled from that. 

From this set of 1,000 samples of the data, accounting for unknown and uncertain values, we randomly 

selected 100 combinations and calculated the posterior probability of a Favorable response for each of 

our four output variables. The mean and standard deviation was calculated for each output, and the 

mean taken as the point estimate of the probability of a Favorable outcome for each species in each of 

the four metrics. Finally, we calculated a vulnerability index for each species. If pTol, pMig, pMR, and pEvo 

are the probability of a favorable response to climate change via Toleration, Migration, persistence in 

Micro-refugia, or Evolution, then vulnerability (V) is given by: 

𝑉 = (1 −
𝑝𝑀𝑖𝑔 + 𝑝𝑀𝑅 + 𝑝𝐸𝑣𝑜

3
) × (1 − 𝑝𝑇𝑜𝑙) 

Note that Toleration is more heavily weighted than the other three responses. This reflects the 

reasoning that, for a species with a high likelihood of tolerating a given climate shift, other modalities 

are less important. Secondly, this index inverts the numerical interpretation of the raw metrics. The raw 



metrics are the probabilities of a Favorable response (higher scores imply less vulnerability to climate 

change) while higher values of the index indicate greater vulnerability to climate change. 

6 Project results 

6.1 Climate envelopes 

In the course of this vulnerability assessment, 

we modeled species ranges for 1056 native 

Hawaiian plant species. In addition to modeled 

range under current climate conditions, we 

modeled conditions under three different 

climate downscaling models. The results allow 

for a comparison of how the choice of 

downscaling model affects the forecasts of 

ecological models. As an example, Figure 1 

shows the distribution of changes in species 

range under the three climate models across all 1056 species. For this particular metric the A1B and RCP 

4.5 models produce more similar distributions than the RCP 8.5 model, which shows a relative 

preponderance of decreases in percent change in range area compared to the other two. Other metrics 

(all model inputs are available as a data product for this project) show greater similarity between A1B 

and RCP 8.5 or essentially identical distributions for all three models. GIS shapefiles describing statewide 

range maps under all three climate scenarios are also available as data products of this project. 

6.2 Relative vulnerability 

After running the model to produce measures of each species’ ability to cope with climate change in 

each of the four modalities, and summarizing the four scores as a single vulnerability index, we were 

able to rank each species, and classify each as being of high, medium, or low relative vulnerability 

among native Hawaiian plant species. Raw scores and indexes are available as a separate data product, 

and summarized in a digital appendix to this report. Table 1 shows sample results, displaying percent-

scaled ranks for the most, middle, and least 

vulnerable species as ranked by the 

vulnerability index calculated based on the 

dynamically downscaled A1B model. The table 

shows how the relative values of the four 

output metrics affect the index score. It also 

shows index scores calculated based on the 

two statistically downscaled climate models 

and the phase 1 downscaling assessment. 

Finally, it shows the change in vulnerability 

between the phase 1 assessment and the 

current project. 

Figure 2 demonstrates the correlation of 

Figure 1. Distribution of percent change in the area of species 
range from present-day climate conditions to those projected 
by three different climate downscaling models. 

Figure 2. Correlation between % scaled vulnerability ranks by 
climate downscaling model. Horizontal axis is based on the 
dynamically downscaled A1B model, while vertical bars are the 
range in ranks between the statistically downscaled RCP 4.5 
and 8.5 models. 



relative vulnerability among the three downscaling models. The greatest differences are between the 

RCP 4.5 and 8.5 models, but both of those are roughly correlated with the A1B model, and the range of 

the two RCP models usually incorporates the A1B model, as shown by the linear trend. As a final check 

of the model results, we requested our panel of expert botanists to spot-check results by selecting 

candidate species with which they were especially familiar. They compared the models relative 

vulnerability assessment (high, medium, or low vulnerability) with their expert opinion. There was 

general convergence of model and expert opinion. 

Table 1. Most, middle, and least vulnerable species according to the percentage-scaled vulnerability index calculated from the 
dynamically downscaled A1B model. Also shown are the scaled individual response metrics (Tolerate, Migrate, Micro-refugia, 
and Evolve). For comparison, we show the percent scaled vulnerabilities from the statistically downscaled RCP 4.5 and 8.5 
models, as well as the vulnerability from the phase 1 assessment (based on an A1B model) and the change in percent-scaled 
vulnerability rank.  

 

Downscaled A1B climate model Vulnerability index 
 Species Tol. Mig. M.R. Evo. A1B RCP 4.5 RCP 8.5 Phase 1 Change 

Entada phaseoloides 3.8 12.1 0.3 1.9 100.0 99.4 99.5 91.3 -8.7 
Geranium hanaense 0.7 0.3 14.2 4.9 99.9 99.7 100.0 94.4 -5.5 

Cyrtandra procera 0.1 5.7 19.6 29.5 99.8 90.5 99.4 72.9 -26.9 
Sanicula kauaiensis 5.1 0.2 22.2 0.4 99.8 99.1 94.7 74.1 -25.6 

Cyrtandra calpidicarpa 3.2 8.0 2.6 17.5 99.7 91.0 89.9 61.8 -37.9 
Coprosma elliptica 5.0 0.5 18.5 1.6 99.6 96.1 87.7 92.7 -6.9 
Cyrtandra rivularis 9.6 1.3 4.6 0.2 99.5 98.0 93.7 62.2 -37.3 

Pritchardia schattaueri 6.6 1.8 6.2 1.5 99.4 89.8 95.5 88.6 -10.8 
Cyrtandra ferripilosa 2.2 5.8 14.7 3.3 99.4 95.3 92.5 77.4 -21.9 

Metrosideros macropus 14.5 0.1 1.7 0.2 99.3 99.9 95.1 64.4 -34.9 

   
 Viola lanaiensis 33.2 67.4 47.9 75.3 53.3 55.4 58.2 92.3 39.0 

Gahnia lanaiensis 42.4 51.3 62.9 36.8 53.2 50.5 59.3 90.5 37.3 
Bidens mauiensis 47.4 40.2 32.8 68.5 53.1 53.8 57.4 63.2 10.0 

Psychotria mariniana 32.1 62.8 44.9 84.6 53.0 44.0 43.5 32.2 -20.7 
Euphorbia celastroides 55.2 47.0 36.8 35.5 52.9 64.9 54.6 25.7 -27.2 

Melicope haupuensis 49.8 53.8 26.4 64.7 52.7 64.7 66.5 77.3 24.6 
Cyanea longiflora 40.8 44.4 46.9 74.6 52.6 71.3 90.0 68.6 16.1 

Pritchardia hillebrandii 40.7 61.0 40.2 68.7 52.4 53.5 47.9 88.7 36.3 
Kanaloa kahoolawensis 49.6 37.9 72.5 22.6 52.1 52.0 44.8 99.9 47.7 

Cyrtandra kohalae 58.5 46.9 56.6 16.6 52.1 68.5 85.2 58.7 6.6 

   
 Santalum paniculatum 97.7 98.5 100.0 72.5 1.0 1.7 0.3 11.0 10.1 

Carex wahuensis 98.0 99.4 98.0 96.0 0.7 1.2 0.6 8.5 7.7 
Astelia menziesiana 98.7 98.5 96.8 97.6 0.6 1.0 1.5 9.8 9.1 

Nototrichium sandwicense 99.8 95.2 98.8 80.3 0.6 0.3 1.1 29.6 29.0 
Colubrina oppositifolia 99.5 97.6 99.6 89.6 0.5 0.2 0.2 32.6 32.1 

Hesperocnide sandwicensis 97.1 99.9 99.4 99.8 0.4 0.9 0.5 24.9 24.5 
Bidens menziesii 97.6 99.5 99.8 99.7 0.3 0.5 1.3 19.2 18.9 

Capparis sandwichiana 99.9 98.9 89.1 91.2 0.2 0.6 0.6 43.8 43.6 
Scaevola kilaueae 100.0 87.7 91.3 65.3 0.2 0.1 0.1 22.8 22.7 

Adenophorus tamariscinus 99.8 99.6 99.2 98.7 0.1 0.2 0.2 1.6 1.5 

7 Analysis and findings 
There was a general pattern of agreement among the vulnerability assessments under the three 

different climate downscaling models. There was also agreement between the current assessment and 

the previous model. Where there was significant divergence it could sometimes be explained by 

improvements to the model made in this project. For example, in Table 1 the greatest change in 



vulnerability was for Kanaloa kahoolawensis. This is a coastal species, and the current model better 

assumes it will be able to accommodate increasing temperature, whereas under the previous model it 

had no potential range in the future. Another anomaly is Viola lanaiensis. This species was classified as 

highly vulnerable under the previous assessment, and in this project it had mid-range scores in most 

metrics, but a relatively high (75th percentile) rank in the Evolve response, which was introduced in the 

newer model. 

It should be noted that the species range models used in this vulnerability assessment were relatively 

simple, using only temperature, rainfall, elevation, and broad geographic constraints to determine 

potential range. In practice, there are other geophysical parameters such as substrate type, and 

permeability, as well as climatic parameters such as insolation, temperature extremes, and 

evapotranspiration that could be expected to change along with the global climate. In addition, climate 

downscaling techniques are expected to improve, providing higher spatial resolution and better 

accommodation of the steep altitude gradients that drive climate effects on an individual species scale. 

When interpreting these vulnerability results it is important to treat them as relatively broad categories 

rather than definitive rankings. Fundamentally, any model is a lower-precision representation of the real 

world, and there is uncertainty associated with the biological and climate-model-based geographic 

variables used as inputs. The vulnerability scores our model produces should be treated as approximate 

rather than absolute. Even if the model and inputs were perfect, there is incomplete data for most 

species, so our output metrics are based on a stochastic sample of a posterior distribution. It would not 

be proper to conclude from Table 1 that Entada phaseoloides (rank 1, most vulnerable) is more 

vulnerable than Geranium hanaensei (rank 2), but it is very likely that it is more vulnerable to the effects 

of climate change than Adenophorus tamariscinus (rank 1056). 

8 Conclusions and recommendations 
Climate is a key predictor of the suitable range of plant species. In the course of our modeling, we 

examined the effects of three different downscaling models on projecting the potential range of 1056 

native Hawaiian plant species at the end of the 21st Century. The results show that there are differences 

in the projected ranges but for the most part, they are relatively minor. Where there are differences 

there is a tendency for the dynamically downscaled A1B to be more like the statistically downscaled RCP 

8.5, but that pattern is not universal (see Figure 1). Thus, we can present these results as evidence that – 

when considering how climate change will affect the geographic ranges of native Hawaiian plant species 

– the choice of downscaling model does not have a major effect. 

Our vulnerability model produces a relative score measuring the vulnerability of plant species to the 

effects of climate change on temperature and precipitation. The results are in broad agreement with the 

rankings of the previous (Fortini et al. 2013) assessment, and spot checks are in accordance with expert 

opinion. Major differences are often attributable to improvements in the species range modeling and 

the vulnerability model. Different climate downscaling models have minor effects on the exact 

vulnerability ranking of species, and do not affect broader (decile- or quartile-scale) rankings as we 

recommend the results be used. 



9 Management implications and products 
The relative vulnerability ranks produced by this project will assist resource managers in prioritizing 

species for conservation and mitigation in the face of climate change. We provide raw metric scores as 

well as vulnerability indexes and rankings. Although the full, digital table of results contains scores from 

all three climate downscaling models, as mentioned above, the choice of downscaling model does not 

affect interpretation of relative vulnerability. 

We also produced species range maps for climate conditions projected to the end of the century. 

Resource managers interested in a particular species can download GIS shapefiles to see the projected 

ranges of native plant species under the three climate downscaling models. This information may inform 

decisions about land management or acquisition to preserve and protect habitat that will be suitable for 

species of concern into the future. While not as detailed in interpretation as the maps produced by 

Jacobi et al. (2016), our results encompass a wider range of species. 

To populate the life-history traits of the categorical network model, we compiled a database of physical 

and life-history traits of native Hawaiian plant species. This database – which also includes the 

geophysical parameters used to fit the model – is available online, and may serve as a resource for 

scientists and resource managers working with native Hawaiian plant species. 

Running our categorical network model involves a great deal of data processing. Species range maps are 

processed to extract geospatial variables, which are then categorized and combined with biological trait 

data. The network model is then run multiple times for each species to generate a simulated posterior 

distribution of the probability of a species favorably coping with climate change by four methods 

(Tolerate, Migrate, persist in Micro-refugia, and Evolve). We have developed a tool chain using the 

Python computer language in an ArcGIS framework and R statistical computing environment to carry out 

these steps and produce results similar to those in Table 1 and the digital appendix to this report. This 

set of of tools is now available. If new and improved climate downscaling models, or improved species 

range models become available, updating the vulnerability assessment is now a relatively 

straightforward process. The tools are also applicable to any other ecological system where projected 

changes in species ranges are available. Using an adaptation of our categorical network model, or a 

model designed specifically for the new system, our tool chain simplifies the process of applying our 

technique to other ecological communities. 

10 Outreach 
As this project is an expansion of the first Hawaiian plant vulnerability assessment released in 2013, it 

benefits from a wide community of plant conservation practitioners that have participated in it since 

2011. Most importantly, our expert-elicitation exercise detailed in the report served two purposes. The 

first was to gather species information to feed our models, but the second allowed us to engage with a 

substantial portion of Hawaii’s plant conservation community about our project goals and products. We 

contacted over 20 top plant experts to discuss our project’s aims and goals and several volunteered a 

significant amount of their time to help. 



Besides this significant elicitation effort, there are simply too many standard outreach actions for an 

exhaustive list. Two notable examples are the IUCN workshop on rare plant conservation organized by 

PEPP, where we discussed the upcoming release of the assessment to a large group of plant 

conservationists from Hawaii and elsewhere, and at the Annual OANRP meeting where we discussed the 

vulnerability of rare Hawaiian plants. 

In several other events we have discussed the assessment goals and progress as well with other 

managers and researchers: the Hawaii Ecosystems Meeting held in July 2015; a landscape planning 

meeting for DOFAW in Maui; several PICCC steering committee meetings; at the 2015 regional meeting 

for the FWS Inventory and Monitoring program. With the work now concluded, we will continue to 

engage with partners (DOFAW, FWS, PEPP, TNC, NPS, Army) at key management organizations one-on-

one to discuss our new products and determine if any additional synthesis efforts are necessary to 

address individual stakeholder needs. This was the process we adopted in the precursor assessment that 

clearly led to the widest consideration/ adoption of our results. 
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